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Abstract

This paper presents a rational approach to modelling the triple velocity corre-

lations that appear in the transport equations for the Reynolds stresses. All ex-

isting modds of these correlations have largely been formulated on phenomeno-

logical grounds and arc defective in one important aspect: they all neglect to

allow for the dependence of these correlations on the local gradients of mean

velocity. The mathematical necessity for this dependence will be demonstrated

in the paper. The present contribution lies in the novel use of Group Reprcsen-

ration Theory to determine the most general tensorial form of these correlations

in terms of all the second- and third-order tensor quantities that appear in the

exact equations that govern their evolution. The requisite representation did

not exist in the literature and theTvforc had to be developed specifically for this

purpose by Professor G. F. Smith. The outcome of this work is a mathematical

framework for the construction of algebraic, explicit, and rational modds for

the triple velocity correlations that arc theoretically consistent and include all

the correct dependencies. Previous modds arc reviewed, and all arc shown to

be an incomplete subset of this new representation, even to lowest order.

I Introduction

The state of the art in closure of the Reynolds averaged form of the Navier-Stokes

equations requires the solution of a differential transport equation for each nonzero

component of the Reynolds stress tensor (_). These equations are exact but contain

a number of correlations which are unknown and must first be modelled in terms of

known or knowable quantities. One such correlation, and the focus of this work, is

the time averaged triple velocity product (_) whose spatial gradients represent

the rate at which the Reynolds stresses are transported by the turbulent fluctuations.

Conventional models of these correlations have been formulated with this physical

role in mind. Specifically, and by analogy with the gradient transport hypothesis,

Daly and Harlow (1970) assumed that the triple correlations are proportional to the

spatial gradients of the Reynolds stresses to obtain

k O_iuj
-uiujuk = C_-ukuz-- (1)

e OZ" l



where/_' is the turbulence kinetic energy (i.e., half the trace of u_), e is its dissipation

by viscous action, and Cs is a proportionality coefficient. The Daly-Harlow model is

the most widely used model in advanced simulations methods. However, while the

triple velocity correlations themselves are independent of the order of the indices, the

representation (the right-hand side of Equation 1) is not invariant under the permu-

tation of the same indices. This is not usually a problem in thin shear layers where

the flow direction is known a priori. It does, however, become so in general flows

where turbulent mixing can be significant in all coordinate directions. Several alter-

native models have been reported in the literature, and discussion of some of these is

deferred until Section III. Suffice it to say here that these models, while being consid-

erably more complex than Daly and Harlow, have not produced tangible or consistent

improvements in the quality of predictions. The lack of improvement is equally true

in both simple, two-dimensional flee shear flows as well as in rapidly evolving flows

in the presence of complex strain fields. This is the case, in our opinion, because all

proposed models fail to reflect the dependence of the triple velocity correlations on

an essential mechanism for turbulence transport, namely the spatial gradients of the

mean velocity. That a rational model for uiujuk should exhibit explicit dependence on

the gradients of mean velocity will be demonstrated conclusively in the next section.

The provision of a theoretical framework for the formulation of such a model and a

demonstration of how this explicit dependence can be introduced without recourse to

empiricism provide the principal motivation for the present work. In Section II, the

mathematical basis of the problem is presented. Our proposals for the formulation of

a rational model for the triple velocity correlation are put forward in Section III and

are discussed there in relation to existing models. Conclusions are given in Section IV.

In developing a rational model for the triple velocity correlations, we sought to find

a general representation of a third-order tensor in terms of both second- and third-

order tensors. No such representation could be found in the published literature, and

the need therefore arose for the development of the mathematical representation to

specifically meet this requirement. This challenging task was performed by Professor

G. F'. Smith; his original work, which will no doubt find application in other fields of

science, is included in the appendix.

II The Mathematical Context

We consider here the turbulent flow of a viscous, incompressible fluid with con-

stant properties. The governing field equations are the Navier-Stokes and continuity

equations, which are given by

Dfii 0/5 02fii

- + 0x :' (2)

Ofii
-0, (3)

Oxi

where fii is the instantaneous velocity vector, /5 is the static pressure and _/ is the

kinematic viscosity of the fluid. In equations (2) and (3), the Einstein summation
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convention applies to repeated indices, and D/Dt is the convective derivative defined

as

D O O

Dt = Ot + _j Ozj (4)

The instantaneous velocity and pressure are decomposed into mean and fluctuat-

ing parts as follows:

fii = 5] + ui, /5 = P + p. (5)

By substituting (5) into equation (2) and applying the Reynolds averaging rules (cf.

Hinze 1975), there results the Reynolds-averaged Navier-Stokes equation:

DS] OP 025] O_uj

Dt - Oxi + " OxJ Oxj (0)

Due to the nonlinearity of the convection term in equation (2), the time-averaging op-

eration introduces additional unknowns in the form of the Reynolds stress tensor uiuj.

This is the closure problem referred to in the Introduction. The most advanced meth-

ods for resolving this problem rely on the solution of differential transport equations

for Itilt j. Derivation of these equations proceeds by multiplying the i-th component

of equation (2) by _j and the j-th component by ui. By summing and applying the

Reynolds averaging rules, we have

Convection Production

Dt - +

Diffusion

-_c-k -uiujuk + P

Dissipation Redistribution

2. \ Oxk Oxk] + - +p \Oxj Oxi]
(7)

The Reynolds averaging process has clearly resulted in additional unknown turbulence

correlations, another manifestation of the closure problem. The literature contains

numerous proposals for approximating these correlations (Speziale 1991 provides a

comprehensive review of the subject). Our interest here is in the triple fluctuating

velocity components Itiltjlt k. The exact equation governing the evolution of Itiltjlt k

reads (cf. Chou 1945):

Duiujuk

Dt

I

r( 0 05] 0

3



II

r

uiuj ÷ ujuk-- ÷ ukui
Oxi

+

III

[ 0_ O_iul

-+ )
IV V

0 02_iujuk

Oxzuiujukuz+v Ox_

VI

[' Oui OujOxz OukOxzOuiOxz OujOxzOuk )Oxz/

It is immediately clear from line I of this equation that the gradients of mean velocity

appear explicitly in the exact equation for the triple velocity correlations. Further,

and as was shown by Chou (1945), the gradients of mean velocity must also appear ex-

plicitly in the correlation between the Reynolds stresses and the pressure fluctuations

(line II above). Thus, by differentiating equation (2) to obtain a Poisson equation

for the instantaneous pressure, and then by subtracting the mean, Chou obtained an

equation for the fluctuating pressure:

1 02p [02(u._uk- u._uk) 20U._ Oukp Ox_ - OxkOx,_ + Oxk Ox,_ (9)

Then, with the assumption of homogeneous turbulence, and for regions of the flow

remote from solid boundaries, the following approximate solution was obtained:

1( Op Op _) OU,_ (10)-- _ti_t j ÷ _tj_tk-- ÷ _tk_ti

The forms of the tensors, b_,_ijk and cijk, that appear in equation (10) are not material

for the present purposes (they are given by equation (5.8) of the original reference).

What is important here is the presence of the mean velocity gradients in the solu-

tion. It therefore follows that a rational modal for the triple velocity correlation must

contain an explicit dependence on the gradients of mean velocity so that it remains

consistent with the exact equation, and so that it stands a chance of representing the

correct physics. Mathematically, this proposition implies that a model for the triple

velocity correlations must be of the following functional form:

where S,_ and ld/,_ are, respectively, the mean rate of strain and the mean vorticity

tensors:

I (OU,_ OU_) (12)
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The dissipationrate eis includedin the argumentof the generalfunctional representa-
tion in order to build up the turbulence length and time scales(1and T, respectively)
from the relations:

k 3/2 k

1 c< --, 7- c< - (14)
( (

Inspection of the Daly and Harlow (1970) model, equation (1), shows that it follows

the incomplete representation

This is also true of all the models that have appeared in the literature. Hanjalic

and Launder (1972), for example, derived a model from simplification of equation

(8), but although they recognized that a complete model for II should contain the

gradients of mean velocity, they proceeded to neglect this contribution from their

workings. Thus, while their model represents an improvement over that of equation

(1) (in being symmetric under the permutation of indices), its use in actual flow

simulations has not produced tangible improvements. A discussion of some of the

published proposals for the triple velocity correlations is included in the next section.

Suffice it to say that all turn out to be of the functional form given by equation

(15) rather than the mathematically consistent form of equation (11). In the next

secion, we put forward our proposals for the formulation of a rational and consistent

alternative.

III The Present Proposal

One way to proceed in the formulation of a rational model for uiujuk is to attempt

a term-by-term approximation of the various unknown turbulence correlations that

appear in equation (8). The obvious difficulty with this approach lies in formulating

adequate approximations to the large number of additional unknown terms that are

involved. An example is the term that involves the gradients of the quadruple velocity

correlation. An exact equation for this term is again not difficult to construct but will

involve yet higher-order unknowns that will need to be approximated. Truncation of

the process of introducing increasingly higher-order correlations can only be achieved

by arbitrary considerations something that is not in keeping with the present

requirement for a rational formulation.

Instead, the present proposal is to use Group Representation Theory to construct,

in accordance with the functional relation of equation (11), the most general algebraic

representation for the symmetric third-order tensor uiuju k in terms of both second-

and third-order tensors. Both symmetric and antisymmetric second-order tensors

are to be included in the representation. This representation is also required to be

invariant under the three-dimensional full orthogonal group O3.
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Surprisingly, the required mathematical representationdoesnot exist in the lit-
erature. Pennisi (1992) proposed a tensorial representationfor a functional of a
third-order tensor whosedependentvariables consist of first- and second-orderten-
sors. This representation, is clearly inadequatefor the presentpurposesasit would
leadto a model for the triple velocity correlationsthat doesnot contain dependence
on the gradientsof the Reynoldsstresses.This dependenceis requiredby term II in
equation (11).

The necessaryrepresentationtherefore had to be developedspecifically for this
work. This task wasachievedby ProfessorG F Smith. As it forms a distinct con-
tribution to the subject, details of the theory are reproducedfully in the appendix.
The completerepresentationfor the triple velocity correlationsthat is consistentwith
the functional of equation (11) admits tensor dependenciesup to fourth order. We
shall henceforthdismissterms that areof ordersthree and four becauseof the large
numbersinvolved,equation (A4), and more importantly, becausetheseterms do not
introduce tensor parametersthat are not alreadypresent in the linear and bilinear
representation.

With this simplification, the generalrepresentationof the triple velocity correla-
tions suggestedby Smith's theory consistsof the following group of terms:

Croup [: Terms that are linear in (_),k. There are three linearly independent

terms of this type, as indicated by (All).

Croup II: Terms that are bilinear in (_),k and _. There are eleven such terms

(A12).
Group III: Terms that are bilinear in (_),k and S,ij. There are eleven linearly

independent terms of this type (A13).

Group IV'. Terms that are bilinear in (_),k and Vdij. There are five such terms

(A14). There are thus thirty terms in all, the combination of which produces a general

representation of the form

30

z C._,ij k (16)
_/=1

,_(v)
where the "_ijk (7 = 1,..., 30) are the third-order symmetric tensor-valued isotropic

functions listed in All A14. The cv are material constants.

We shall now consider the relation between this general representation and various

ad-hoc models for the triple correlations. The literature contains a diverse assortment

of such models, but these fall into two categories which are either linear or bilinear

in the tensor dependencies shown in equation (15).

First we consider models that are linear in the Reynolds stresses uiuj. Examples

of these models are the proposals of Mellor and Herring (1973) (henceforth referred

to as MH) and Shir (1973). The MH model is given by

-u uju = c.. y \ + + / ' (17)

where CMH is a constant. Shir's model contains only the third term in equation (17)

and therefore does not exhibit correct symmetry. Both models are a sub-set of the
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generalrepresentationin equation (16). The MH model, for example, corresponds

to the _ Aijk term of equation (All). If all linear terms were to be included in a

model, then two additional terms would appear, namely Aipp6jk and _ Appi6jk. A

consistent linear model for the triple velocity correlations would thus read

-- ttittjtt k

Mellor and Herring

: CMH'IV k Oxi @ OX_ _- oak ]

h"2/O_Tup Ogjup _ Ou_ 7 ]
+ CMH,2 7 r--ajk + --bki +

/

Ok Ok Ok "_
k2 (--5jk + + ) (is)

Incidentally, this more complete formulation was also considered by Mellor and Her-

ring (1973) who discarded it on the grounds of computational expediency.

Next, we consider models that are bilinear in the tensor quantities. The Daly

and Harlow (1970) model, equation (1), is of this category but, as already mentioned

in the Introduction, is not independent of the order of indices and cannot therefore

be included in the tensor representation shown in the appendix.

A more complicated, but tensorially admissible expression has been proposed by

Hanjalic and Launder (1972) (hereafter HL). They arrived at their model by com-

bining lines III and IV of equation (8) after a proposition by Millionshtchikov (1941)

and by neglecting lines I and II entirely. In addition, the transport term on the

left-hand side of the same equation to obtain the following algebraic representation:

= - uiu_ + uju_ + ukuz , (19)

where CHL is a constant. This model corresponds to the _ AijpTpk term given in

(A12). Note that the MH model can be viewed as an isotropized version of the HL
model.

Another model which is bilinear in the tensor quantities is that of Lumley (1978).

He considered weakly anisotropic and inhomogeneous flows and applied stochastic

considerations to obtain

(20)

In terms of the notation used here, Gijk = _ AijpTpk, and the model given in equation

(20) can be rewritten as

(21)

Equation (21) shows that Lumley's model is tensorially equivalent to that of Hanjalic

and Launder in being bilinear in the tensor product of uzu,_ and OuT_7/Ox_. Both

models, however, are only a subset of the 11 possible bilinear basis tensors (see (A12)).
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Finally, Cormacket al. (1978) formulated a model in terms of the deviatoric part
of the Reynoldsstresstensor,uiuj - 2/35ijk. In the mathematical frameworkoutlined
here,their model reads

+

(22)

Thesesix closure constantsare linear combinations of the original four constants
proposedby Cormacket al. (1978). Magnaudet (1993)also consideredthe Cormack
model and provided a cross-diffusionextensionwhich included the gradient of the
isotropic dissipation rate. These terms were not included in the functional form
proposedhere, equation (11), as there is no evidencefrom equation (8) that such
terms shouldbe present.

It shouldbe recognizedthat sincethe tensorrepresentationsgivenin (All) (A14)
donot imply anyasymptotic orderingof the terms, all thesemodelsshouldbeviewed
asarbitrary truncations of thefull representationbasis.TableI givesa summaryof the
modelsdiscussedand the correspondingbasisterms involved. It is clear from Table
I that the majority of thesemodelsare bilinear in the Reynoldsstressesand their
gradients. None of them contain the dependence on the mean velocity gradients that

is required by the exact equation. It is not surprising, therefore, that there is little real

Table I. Summary of uiujuk models and corresponding tensor bases

Basis

Tensor

l Aijk

Aipp@k

Appi 5_ k

AippUk

App i wj k

Aijp_-pk

Aipq_-pq@k
A ppq _-qi@ k

Model

Hanjalic and Launder

(1972)

0.11

Mellor and Herring Lumley

(1973) (1978)

0.073

0.098

0.013

Cormack et al. Magnaudet

(1978) (1993)

0.069

--0.136

--0.632

0.102

--0.068

0.192

0.16

0.125

difference in their performance across a wide range of benchmark turbulent shear flows

(see, e.g., Schwarz and Bradshaw 1994, and Cormack et al. 1978). There are a number

of flows in which the ratio of turbulence kinetic energy production to dissipation

rates is near unity, and hence the gradients of the triple velocity correlations make

only a modest contribution to the overall budget of the Reynolds stresses. In such

flows, defects in modelling the triple velocity correlations are easily concealed by

shortcomings in the closure of the other unknowns in equation (7). In other flows, such

as in the self-similar wake behind a bluff body, for example, the ratio of production

to dissipation is only about 10 percent, with the remainder of the balance provided

by the gradients of the triple correlations. It is precisely in these "weakly sheared"
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flows that current turbulence closuresseemto fail very badly.
While the formulation of a triple-velocity correlationsmodel that can be usedin

practical computationsis outside the scopeof this work, it is neverthelessuseful to
illustrate how sucha model couldbe formulated. It is reasonableto arguethat terms
that arebilinear in (_),k and_ shouldbe includedin the compactmodel for the
triple correlations,simply in order to ensurethat thesequantitieswill vanishaseither
the Reynoldsstressesthemselves,or astheir spatial gradients,go to zero. Dependence
uponthe gradientsof meanvelocity canbe introduced through the retention of a term
that is bilinear in the Reynoldsstressgradientsand the mean rate of strain tensor.
The resulting model would then read

-- Ililljll k

k"( 8#juk 8_kui 8_'_

k.3 ( O_ O_< _ O_'_
+ (23)

Alternatively, an argument can be made to the effect that the contributions to the

triple-velocity correlations arising from S,ij and Wij are of the same order and, as

such, can be combined. Thus, with the retention of a pair of terms that are bilinear

in (_),k and S,ij or Vd,ij there results

/_'( O_ O_i O_--Ililljlllc = 0_17 -Ilill_ OXmp- @ Iljll_ OXmp- @ IlkllP OXp ]

@ 0/2_ k OXi OXp @ OXj OXp @ OXlc OXp )
(24)

The illustrative models represented by equations (23) and (24) are, to our knowl-
edge, the first rational, algebraic and explicit representations for the triple velocity
correlations that are formulated from theoretical considerations and that allow for

the explicit dependence of these correlations on the gradients of mean velocity. The

coefficients ch and c_2 can be taken as constants and assigned numerical values by
reference to the extensive data sets now available from Direct Numerical Simulations

(e.g. Mansour et al. 1988).

IV Closure

The purpose of this paper was to advance a rational approach to modelling the

triple velocity correlations of turbulence. A rational model was obtained by recourse

to Group Representation Theory and by the development, specifically for the present

purposes, of a representation for a symmetric third-order tensor in terms of both

second- and third-order tensors, which are invariant under the full orthogonal group.

Analysis of previous models showed all to be an incomplete subset of the full for-

mulation that lacked, in particular, an explicit dependence on the gradients of mean

velocity. This dependence appears explicitly in our representation and can there-

fore provide the basis for the development of a rational model for the triple velocity

correlation. A demonstration of how this model may be formulated was provided.
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Appendix

On the Representation of Third-Order Tensors

G. F. Smith

Department of Mechanical Engineering _ Mechanics

Lehigh University, Bethlehem, PA 18015, USA

The following notation is adopted in this appendix:

7_pq z _t p _t q

Cijk -- uiujuk

We consider the problem of determining the form of a third-order symmetric tensor-

valued polynomial function

which is invariant under the orthogonal group 03 and which will be referred to as

an isotropic function. The group 03 is comprised of all 3 × 3 orthogonal matrices Q

which satisfy

QQT = QTQ = I = diag(1,1,1), dctQ = +1. (A2)

The tensors appearing in (A1) satisfy

Cijk = Cjki = Ckij = Cikj = Ckji = Cjik,

(A3)

We may readily determine the number nl_ n2_ n3_ n4 of linearly independent third-

order tensor-valued functions which are of degree 1, 2, 3, 4 respectively in the compo-

nents of the Aijk, • • •, Wij and which are invariant under 03. The procedure employed

is similar to that adopted by Smith (1968). We have

7/1 ---- 3, n2 = 27, n3 = 225, n4 = 1429. (A4)

The large number of terms of degree 3 and 4 in the Aijk,..., Wij leads us to limit

consideration to the terms of degree _< 2 appearing in (A1). Let

The terms of degree _< 2 appearing in the polynomial expression (A1) may then be
written as

3

Cijk Cijk + _ _(_) n(_)
c_=1

+
3 (A6)3 _(_' _) n(_)B (_) "_'(_) A B (_)"

a, /3=1; a__/3 a=l

+ Hiy.._pq_.Al.._Apq_..

10



n(_) .. H,iy._pq_, appearing in (A6) are referred to as prop-The tensors Cijk, _'iy,_," ,

erty tensors. The requirement that (A6) be invariant under 03 imposes restrictions

on the property tensors. Thus, the tensors Cijk, 1D(cQ_'ijkZ_,''" must be invariant under

03, i.e.,

(A7)

ukz._ = Q_pQjqQk, (o_= (1, 2, 3),t_ Is t_ _nt JJpqrst, • • •

must hold for all Q = ll@pll belonging to 03. Such tensors are referred to as isotropic
tensors. There are no tensors of odd order which are invariant under 03. Even order

tensors which are invariant under 03 are expressible in terms of tensors of the form

6ij, 6ij6kl, 6ij6kl6,_,... where 6ij denotes the Kronecker delta tensor defined by

6_j=l ifij=ll, 22, 33;

(AS)

6_j=O ifij= 12, 21, 13, 31, 23, 32.

See, for example, Smith (1994, p. 94) or Smith (1968). Thus, the tensors of odd

order Cijk, n(_) F(_' _) H, ijkz,_pq,, appearing in (A6) are null tensors, i.e. allL'ijkl_n' _ ijkl_nnp'

components of these tensors are zero. The expression (A6) then reduces to

(1)
Cijk = Eijkl._Al._ + Gijkl._pqAl._Tpq+

@ tJijkl_nnpq_l_nn2pq @ tJijkl_nnpq_l_nn VVpq.

(A9)

We may readily show that the number of linearly independent third-order symmetric

tensor-valued isotropic functions which are linear in Aijk, bilinear in Aijk and Tij,

bilinear in Aijk and S,i_, and bilinear in Aij_ and Wi_ are given by 3, 11, 11 and 5

respectively. We shall employ the notation _ B<.j..._ to indicate the sum of the three

tensors obtained by cyclic permutation of the subscripts ijk on the sumlnand. For

example,

Ai_ = Ai_ + Aj_i + A_i_,

(AIO)

The three linearly independent terms appearing in (A9) which are linear in Aij_ are

given by

The eleven linearly independent terms appearing in (A9) which are bilinear in Aij_

and _ij are given by

Aq_qi5_, _ _ A_pi5_, _ _ Ai_5_.

11



The eleven linearly independent terms appearing in (A9) which are bilinear in Aijk

and Sij are given by

E AqppSqifjk, Sqq E Appifjk, Sqq E Aippfjk.

The five linearly independent terms appearing in (A9) which are bilinear in Aijk and

l/Kij are given by

AppqW_iSjk, _ AqppSqiSjk.

(A 4)

The polynomial expression (A1), which is invariant under 03 and in which terms of

degree three or greater in the Aijk,..., Wij are neglected, is then given as a linear

combination of the 30 terms listed above, i.e.,

3O

C_'_'ij h

"7=1

a,(v)
where the _'ij_ (7 = 1,..., 30) are the third-order symmetric tensor-valued isotropic

functions listed in (All),...,(A_4). The _ are material constants.
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